Push to start

Research Website of Daniel T. Banuti

Welcome

Welcome to my research website! My work is focused on thermofluids under extreme conditions, such as supercritical fluids, combustion, high-pressure propulsion analysis and modeling. If you want to find out more, please send me an email, or visit one of my online profiles at LinkedIn | Google Scholar | Researchgate.

Supercritical Fluids

While 'supercritical fluids' may sound like a very specialized niche topic, it is actually not: Supercritical fluids are ubiquitous in energy and transportation application, and can be found e.g. in gas turbines, oxy-fuel combustors, rocket engines, and Diesel engines. Supercritical fluids cool power plants, and serve as working fluids in supercritical power cycles. Extraction of oil and CO2 sequestration are supercritical fluids processes. Finally, supercritical fluids can be found in nature, forming the atmosphere of planets like Venus or Jupiter.

[home]

Waves

courtesy dlr.de

Research overview

My specialization is numerical modeling and analysis of compressible non-ideal fluids, i.e pv ≠ RT and v ≠ const. This is relevant for flows that are supercritical, multi-phase, cryogenic, hypersonic, or reactive.

The main challenge in modeling and understanding is the thermodynamic behavior at high pressures: neither liquid nor ideal gas models remain applicable. Instead, fluid state behavior is governed by real fluid equations of state (such as Peng-Robinson, Redlich-Kwong, etc.), and mixing rules.

However, most approaches are based on heuristics. Fundamental understanding of supercritical fluids, the appropriate choice of state equations, physically applicable mixing rules, and numerical methods to solve the problem in a simulation context are very active regions of research.

Multi-fluid-mixing

For high pressure diffusion flames it can be shown that mixing occurs merely between ideal gases, without the influence of any real gas effects. Multi-fluid-mixing [journal] is a new thermodynamic model that uses this to allow application of high quality equations of state without additional computational cost. This model is applicable to transcritical injection problems, as encountered in rocket engines or Diesel engines. [more]

Pseudoboiling

A first quantitative analysis of transcritical heating processes (at supercritical pressure across the Widom line) reveals that there is a supercritical state transition akin to subcritical vaporization - pseudoboiling [journal]. This is important for the design and interpretation of experimental and numerical test cases. [more]

Thermal jet break-up

The pseudoboiling phenomenon causes a very strong temperature sensitivity during injection. This gives rise to a thermal break-up mechanism [journal] - in addition to classical mechanical atomization. [more]

Widom line

It has become clear that the supercritical state-space is not homogeneous, but can in fact be differentiated into distinct liquid and gaseous regions. The transition occurs across the Widom line, an extension to the coexistence line beyond the critical point. This Widom line is a general fluid property, adhering to the extended corresponding states principle [journal], and can even be found in mixtures [journal].

[home]

Waves

About

I am currently a Senior Research Scientist at Cascade Technologies Inc., with a focus on LES / DNS of high pressure combustion systems, such as oxy-fuel combustion and rocket engines.

I had the opportunity to work at the Center of Turbulence Research at Stanford University as a Postdoctoral Fellow, where I studied the application of chemical engineering methods and data analysis of molecular dynamics simulations on high pressure fluid behavior and modeling. Technical processes of interest ranged form fuel injection to CO2 sequestration.

Before, I have been a Research Associate at the German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Spacecraft Department in Göttingen, where I did numerical research on combustion and injection in rocket engines, hydrazine thrusters, and hypersonic flow / flow control using energy deposition.

I received my Dr.-Ing. (PhD) degree from the University of Stuttgart (Dissertation) and the Dipl.-Ing. (MSc) from RWTH Aachen University in Germany. While studying for the MSc, I had the opportunity to spend a year as a Graduate Research Trainee at the University of Tennessee Space Institute.

[home]

Waves

courtesy jaxa.jp

Contact

Like any engineer, I am excited about my work and thus more than happy to discuss it. If you want to find out more, please send me an email, or visit one of my online profiles at

LinkedIn | Google Scholar | Researchgate.

[home]

Breakers

title_slide

For an introduction to "High-pressure transcritical atomization and combustion", watch the video of my tutorial, held during the 16th Biennial Summer Program (2016) of the Center for Turbulence Research at Stanford University.